CHEM-457 PS4 Solutions
1.

MF\&T \#6.1

	Acid	Base	Definition
a.	AlBr_{3}	Br^{-}	Lewis
b.	HClO_{4}	$\mathrm{CH}_{3} \mathrm{CN}$	Lewis, Brønsted-Lowry
c.	Ni^{2+}	NH_{3}	Lewis
d.	ClF	NH_{3}	Lewis
e.	SO_{2}	ClO_{3}^{-}	Lewis
f.	HF	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$	Lewis, Brønsted-Lowry

MF\&T \#6.2

Acid Base Definition
a.
$\mathrm{OH}^{-} \quad$ Lewis
This is not a Brønsted-Lowry reaction since the product connectivity is $\left[\mathrm{XeO}_{3}(\mathrm{OH})\right]^{-}$.
b.
$\mathrm{XeF}_{4} \quad$ Lewis
c. $\quad \mathrm{H}_{2} \mathrm{SeO}_{4}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \quad$ Lewis, Brønsted-Lowry
d. $\left[\mathrm{CH}_{3} \mathrm{Hg}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+} \quad \mathrm{SH}^{-} \quad$ Lewis

This reaction likely occurs via the following steps:

$$
\begin{aligned}
& {\left[\mathrm{CH}_{3} \mathrm{Hg}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}+\mathrm{SH}^{-} \rightarrow\left[\mathrm{CH}_{3} \mathrm{Hg}(\mathrm{SH})\right]+\mathrm{H}_{2} \mathrm{O}} \\
& {\left[\mathrm{CH}_{3} \mathrm{Hg}(\mathrm{SH})\right]+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{CH}_{3} \mathrm{HgS}\right]^{-}+\mathrm{H}_{3} \mathrm{O}^{+}}
\end{aligned}
$$

While a Brønsted-Lowry reaction occurs in the second step, the species listed in Problem 6.2 d are involved in the initial Lewis acid-base reaction.
e. $\mathrm{CH}_{3} \mathrm{COOH} \quad$ (benzyl) $)_{3} \mathrm{~N} \quad$ Lewis, Brønsted-Lowry
f. HCl
$\mathrm{SO}_{2} \quad$ Lewis

MF\&T \#6.30
CsI and LiF fit Basalo's principle that ions of similar size and equal (but opposite) charge form the least soluble salts. CsF and LiI have ionic sizes that are very different, and they do not fit as well into an ionic lattice. In addition, CsI and LiF are soft-soft and hard-hard combinations, which combine better than the hard-soft LiI and soft-hard CsF.

MF\&T \#6.34

a. $\quad \mathrm{TeH}_{2}$ is the strongest acid, because Te is more electronegative than either Sn or Sb . Therefore, the hydrogen is more positive and acidic.
b. $\quad \mathrm{NH}_{3}$ is the strongest base because N is more electronegative than either P or Sb .
c. $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ is the strongest base in the gas phase because the methyl groups contribute electron density to the nitrogen. In solution, the order is scrambled, probably due to solvation (Section 6.3.6).
d. 4-Methylpyridine > pyridine > 2-methylpyridine. Again, the methyl group adds electron density to the N . However, with methyl in the 2 position, steric hindrance makes bonding to BMe_{3} more difficult.

MF\&T \#6.37

$\mathrm{BF}_{3}>\mathrm{B}\left(\mathrm{CH}_{3}\right)_{3}>\mathrm{B}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}>\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{CH}_{3}\right)_{3}\right)_{3}$ Alkyl groups are electron-donating and increase the electron density on B and reduce the attraction for the lone pair of NH_{3}. The bulky mesityl groups render $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{CH}_{3}\right)_{3}\right)_{3}$ less Lewis acidic on the basis of the steric hindrance introduced when these boron centers adopt the required tetrahedral geometry upon complexation of NH_{3}.

MF\&T \#6.38

a. $\quad \mathrm{CH}_{3} \mathrm{NH}_{2}$ is a stronger base on the basis of the electron-releasing ability of the methyl group.
b. Although 2-methylpyridine is the stronger base with smaller acid molecules, the methyl group interferes with adduct formation with trimethylboron (F-strain) and the pyridine-trimethylboron dative bond is stronger.
c. Trimethylboron forms a stronger adduct with ammonia because the three phenyl rings of triphenylboron cannot bend back readily to allow the boron to become tetrahedral (B-strain).
a. As the Lewis acids BF_{3} and BCl_{3} interact with NH_{3}, the geometry around boron changes from planar to trigonal pyramidal; however, in accord with the LCP model the nonbonded $\mathrm{F} \cdots \mathrm{F}$ and $\mathrm{Cl} \cdots \mathrm{Cl}$ distances are nearly constant, suggesting that these atoms remain in contact with each other. Because these nonbonded distances remain essentially constant, the boron-halogen distance must increase as the distortion from trigonal geometry occurs. Because of the strength of the B-F bond, a consequence of the large electronegativity difference between B and F and the small size of the fluorine atom, more energy is required to distort BF_{3} from planarity than to similarly distort BCl_{3}. (Calculations in support of this argument are presented in the reference.) The consequence of this energy requirement is that BF_{3} is a weaker Lewis base than BCl_{3} toward NH_{3}. The article does not address the relative Lewis basicity of BBr_{3}, but a similar argument could apply for this compound.
b. This article does not consider the LCP model but focuses on ab initio calculations on the adducts $\mathrm{X}_{3} \mathrm{~B}-\mathrm{NH}_{3}$. These calculations show a higher $\mathrm{B}-\mathrm{N}$ bond dissociation energy in the BCl_{3} adduct than in the BF_{3} adduct. Although many factors are involved, an important issue is that BCl_{3} has a lower energy LUMO that is able to interact more strongly with the donor orbital of NH_{3}, giving a stronger covalent interaction (and stronger $\mathrm{B}-\mathrm{N}$ bond) in $\mathrm{Cl}_{3} \mathrm{~B}-\mathrm{NH}_{3}$.
2.
Al^{3+} is acidic: $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}$
The hydronium ions react with the basic bicarbonate to form CO_{2} :

$$
\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{HCO}_{3}^{-}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

With $p \mathrm{~K}_{a}$ values of 5.0 for $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}, 6.4$ for $\mathrm{H}_{2} \mathrm{CO}_{3}$, and 2.0 for $\mathrm{HSO}_{4}{ }^{-}$, the pH is about 3, low enough to convert the bicarbonate to CO_{2}.
(3) $\mathrm{NH}^{-}+\mathrm{H}_{2} \geq \mathrm{OH}+\mathrm{OH}^{-}$
(a) $\rangle\rangle$ baped on electronegatuenty of the cendral atom, $\mathrm{NH}_{2}{ }^{-}$is a strorger buns thom OH: i. in $\mathrm{H}_{2} \mathrm{O}$, the PKa of $\mathrm{H}_{2} \mathrm{O}$ will he lass tha the pla of NH2
$p \mathrm{Ka}_{\mathrm{a}} \mathrm{H}_{2} \mathrm{O}=15.7 \quad \mathrm{AKa} \mathrm{NH}_{3}=38 \quad \therefore$ Aploa for this meathon is approx - 23
\therefore Rxu is spontaneone (k \1) + conpleke
(b) $C d F_{2}+\mathrm{CaF}_{2} \Longrightarrow \mathrm{CdF}_{2} \mathrm{CaI}_{2}$

$I^{-} \Rightarrow$ base $F^{-} \Rightarrow$ base
on loft sode, the soffer acod + soffer baue ane painaed t the harder oued t Larder base are pained.
These painings ane mismatcled an the left
(c) $\mathrm{PtCl} \mathrm{P}_{2}+\mathrm{Mg}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right) \rightleftharpoons \mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)+\mathrm{MgCl}_{2}$
$\mathrm{Pt}^{2+} \Rightarrow$ Softacid $\mathrm{mg}^{2+} \Rightarrow$ Hard Aud This veoutan will lie to the

$$
\mathrm{Cl}^{-} \Rightarrow \text { Lotd haue } \mathrm{S}_{2} \mathrm{O}_{3} \Rightarrow \text { Soff bane }
$$ Nught $(K\rangle \mid)$ whene hald acid rs pained w/ land bese t seft arid rs paired wl soft bane

(d) $K C l+C_{u} B_{r} \rightleftharpoons K B_{r}+\mathrm{CaCl}_{1}$
$K^{+} \Rightarrow H^{2} \Rightarrow$ Aad $G_{n}{ }^{+} \Rightarrow$ Sof t acid
$\mathrm{Cl}^{-} \Rightarrow \mathrm{H}^{-}$Base $\mathrm{Br}^{-} \Rightarrow$ Soft base

This reaction will lie tol the left (k< 1) where hand acid is paiced w/ houd bape t soft aeid w/ soft blave
(4.)
(a)

$$
\begin{aligned}
& {\left[\mathrm{Fe}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+}} \\
& {\left[\mathrm{Fe}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}} \\
& \downarrow \mathrm{H}_{2} \mathrm{O} \\
& \sqrt{1+20} \\
& {\left[\mathrm{Fe}\left(\mathrm{OH}_{2}\right)_{5}(\mathrm{OH})\right]^{2+}} \\
& \left.[\mathrm{Fe}(\mathrm{OH}))_{S}(\mathrm{OH})\right]^{+} \\
& + \\
& -1 / 30^{+} \\
& \mathrm{H}_{3} \mathrm{O}^{\mathrm{O}}
\end{aligned}
$$

UEe1 conplex 13 wrie aridnc sinke central $\mathrm{He}^{3 t}$ ron is wore electron withdrawing Hom F^{2}.
Also $F_{=}^{3+} r$ barder than $F^{2 t}+$ will \because be better stobilizad lon the bencl 0 HT viand genarted dunng the acid/bane
(b) HClO_{4} ra mond aeidre flan $\mathrm{HClO}_{3} . \mathrm{HClO}_{4}$ han more e- witholowing Oxo groups that in'cueare the eleciron dforcienuy of te condal culone atom. \therefore the il of $1+0-\mathrm{cio}_{3} r s$ une elfertron defriant Hat the cblonina atom of $10-\mathrm{ClO}$.
(C) $\mathrm{H}_{3} \mathrm{PO}_{4} \mathrm{~B}$ (us acialie Kan $\mathrm{H}_{2} \mathrm{SO}_{4}$ becanne the centenl phosploroue Las a lowe electroregatuvity than 5 .

$$
\mathrm{HO}-\mathrm{PO}_{3} \mathrm{H}_{2}
$$

$$
1 \mathrm{HO}-\mathrm{SO}_{3} \mathrm{lt}
$$

(6) $\mathrm{HNO}_{3} B_{3}$ much nore aciedre than BCOH$)_{3}$ dre fo the amehluyter blee prorrganur k af N us. B.
(5)
(a) $z_{n}^{2 t}$ is Larder than it /rt Both tans thane the savecclarge, but Hf $^{2 t}$ r larger + much mare diffuse
(b) Alkali wetols tend to be lander flan other metal sons of the sane size + charge $\therefore 1 k+1$ os harder than C_{1} t
(c) Fe^{3+} is haver than $\mathrm{Fe}^{2 t}$ beaux It^{2} is wore hi holy donged
(d) $\mathrm{Me}_{3} \mathrm{~N}$ r a hauler base than $\mathrm{Me}_{3} \mathrm{P}$ because N is sudelor + it valence shell is les diffuse flan that of P.
(e) CIT rs a Lander have Han IF. Both rows thane the same charge, bunt Cl s wore electronegative t less polarizable

